以下是智学网为大伙收拾的关于《高中一年级数学必学三基本初等函数公式概念》的文章,供大伙学习参考!
第二章 基本初等函数
1、指数函数
(一)指数与指数幂的运算
1.根式的定义:一般地,假如 ,那样 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).
当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没偶次方根;0的任何次方根都是0,记作 。
注意:当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
,
0的正分数指数幂等于0,0的负分数指数幂没意义
指出:规定了分数指数幂的意义后,指数的定义就从整数指数推广到了有理数指数,那样整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(1);
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的定义:一般地,函数 叫做指数函数(exponential function),其中x是自变量,函数的概念域为R.
注意:指数函数的底数的取值范围,底数不可以是负数、零和1.
2、指数函数的图象和性质
a>1 0图象特点 函数性质
向x、y轴正负方向无限延伸 函数的概念域为R
图象关于原点和y轴不对称 非奇非偶函数
函数图象都在x轴上方 函数的值域为R+
函数图象都过定点(0,1)
自左向右看,
图象渐渐上升 自左向右看,
图象渐渐降低 增函数 减函数
在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 图象上升趋势是愈加陡 图象上升趋势是愈加缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢; 注意:借助函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
(4)当 时,若 ,则 ;
2、对数函数
(一)对数
1.对数的定义:一般地,假如 ,那样数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)
说明:○1 注意底数的限制 ,且 ;
○2 ;
○3 注意对数的书写格式.
两个要紧对数:
○1 常用对数:以10为底的对数 ;
○2 自然对数:以无理数 为底的对数的对数 .
2、 对数式与指数式的互化
对数式 指数式
对数底数 ← → 幂底数
对数 ← → 指数
真数 ← → 幂
(二)对数的运算性质
假如 ,且 , , ,那样:
○1+ ;
○2 - ;
○3 .
注意:换底公式
( ,且 ; ,且 ; ).
借助换底公式推导下面的结论(1) ;(2) .
(二)对数函数
1、对数函数的定义:函数 ,且 叫做对数函数,其中 是自变量,函数的概念域是(0,+∞).
注意:○1 对数函数的概念与指数函数类似,都是形式概念,注意分辨。 如: , 都不是对数函数,而只能称其为对数型函数.
○2 对数函数对底数的限制: ,且 .
2、对数函数的性质:
a>1 0图象特点 函数性质
函数图象都在y轴右边 函数的概念域为(0,+∞)
图象关于原点和y轴不对称 非奇非偶函数
向y轴正负方向无限延伸 函数的值域为R
函数图象都过定点(1,0)
自左向右看,
图象渐渐上升 自左向右看,
图象渐渐降低 增函数 减函数
第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0
第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0
(三)幂函数
1、幂函数概念:一般地,形如 的函数称为幂函数,其中 为常数.
2、幂函数性质总结.
(1)所有些幂函数在(0,+∞)都有概念,并且图象都过点(1,1);
(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;
(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右侧趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.
第三章 函数的应用
1、方程的根与函数的零点
1、函数零点的定义:对于函数 ,把使 成立的实数 叫做函数 的零点。
2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:
方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
3、函数零点的求法:
求函数 的零点:
○1 (代数法)求方程 的实数根;
○2 (几何法)对于不可以用求根公式的方程,可以将它与函数 的图象联系起来,并借助函数的性质找出零点.
4、二次函数的零点:
二次函数 .
1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.
2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.