高一必学四数学复习要点

点击数:727 | 发布时间:2024-11-09 | 来源:www.zxscf.com

    每一门科目都有我们的学习技巧,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。智学网为各位同学整理了《高一必学四数学复习要点》,期望对你的学习有所帮助!

    1.高一必学四数学复习要点 篇一


    求函数值域的办法

    ①直接法:从自变量x的范围出发,推出y=f的取值范围,合适于简单的复合函数;

    ②换元法:借助换元法将函数转化为二次函数求值域,合适根式内外皆为一次式;

    ③辨别式法:运用方程思想,依据二次方程有根,求出y的取值范围;合适分母为二次且∈R的分式;

    ④离别常数:合适分子分母皆为一次式;

    ⑤单调性法:借助函数的单调性求值域;

    ⑥图象法:二次函数必画草图求其值域;

    ⑦借助对号函数

    ⑧几何意义法:由数形结合,转化距离等求值域。主如果含绝对值函数

    2.高一必学四数学复习要点 篇二


    映射:

    一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那样就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”对于映射f:A→B来讲,则应满足:

    集合A中的每个元素,在集合B中都有象,并且象是的;

    集合A中不一样的元素,在集合B中对应的象可以是同一个;

    不需要集合B中的每个元素在集合A中都有原象。

    3.高一必学四数学复习要点 篇三


    集合有关定义

    1.集合的意思

    2.集合的中元素的三个特质:

    元素的确定性如:世界上的山

    元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

    元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

    3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

    用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

    集合的表示办法:列举法与描述法。

    注意:常用数集及其记法:X

    非负整数集记作:N

    正整数集:N*或N+

    整数集:Z

    有理数集:Q

    实数集:R

    4.高一必学四数学复习要点 篇四


    空间几何体表面积体积公式:

    1、圆柱体:表面积:2πRr+2πRh体积:πR2h

    2、圆锥体:表面积:πR2+πR[的]体积:πR2h/3V=abc

    5、棱柱S-h-高V=Sh

    6、棱锥S-h-高V=Sh/3

    7、S1和S2-上、下h-高V=h[S1+S2+^1/2]/3

    8、S1-上底面积,S2-下底面积,S0-中h-高,V=h/6

    9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

    10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh

    11、r-底半径h-高V=πr^2h/3

    12、r-上底半径,R-下底半径,h-高V=πh/313、球r-半径d-直径V=4/3πr^3=πd^3/6

    14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh/6=πh2/3

    15、球台r1和r2-球台上、下底半径h-高V=πh[3+h2]/6

    16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

    17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh/12,V=πh/15

    5.高一必学四数学复习要点 篇五


    设α为任意角,终边相同的角的同一三角函数的值相等:

    sin=sinα

    cosplay=cosplayα

    tan=tanα

    cot=cotα

    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

    sin=-sinα

    cosplay=-cosplayα

    tan=tanα

    cot=cotα

    任意角α与-α的三角函数值之间的关系:

    sin=-sinα

    cosplay=cosplayα

    tan=-tanα

    cot=-cotα

    借助公式二和公式三可以得到π-α与α的三角函数值之间的关系:

    sin=sinα

    cosplay=-cosplayα

    tan=-tanα

    cot=-cotα

    借助公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

    sin=-sinα

    cosplay=cosplayα

    tan=-tanα

    cot=-cotα

    π/2±α及3π/2±α与α的三角函数值之间的关系:

    sin=cosplayα

    cosplay=-sinα

    tan=-cotα

    cot=-tanα

    sin=cosplayα

    cosplay=sinα

    tan=cotα

    cot=tanα

    sin=-cosplayα

    cosplay=sinα

    tan=-cotα

    cot=-tanα

    sin=-cosplayα

    cosplay=-sinα

    tan=cotα

    cot=tanα

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 国家人事考试网(https://www.scxhcf.com/)
All Rights Reserverd ICP备18037099号-1

  • 国家人事考试网微博

  • 国家人事考试网

首页

财经

建筑

医疗