高一数学必学四要点整理

点击数:710 | 发布时间:2024-11-09 | 来源:www.xuexixiong.com

    高中一年级新生要作好充分思想筹备,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校园环境、适应与初中迥异的纪律规范。记住:是你主动地适应环境,而不是环境适应你。由于你走向社会参加工作也得适应社会。以下内容是智学网为你收拾的《高一数学必学四要点整理》,期望你不负时光,努力向前,加油!

    1.高一数学必学四要点整理


    指数函数

    指数函数的概念域为所有实数的集合,这里的首要条件是a大于0,对于a不大于0的状况,则势必使得函数的概念域没有连续的区间,因此大家不予考虑。

    指数函数的值域为大于0的实数集合。

    函数图形都是下凹的。

    a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

    可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中,函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的地方,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的地方。其中水平直线y=1是从递减到递增的一个过渡地方。

    函数一直在某一个方向上无限趋向于X轴,永不相交。

    函数一直通过这点。

    显然指数函数无XX。

    2.高一数学必学四要点整理

    设α为任意角,终边相同的角的同一三角函数的值相等:

    sin=sinα

    cosplay=cosplayα

    tan=tanα

    cot=cotα

    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

    sin=-sinα

    cosplay=-cosplayα

    tan=tanα

    cot=cotα

    任意角α与-α的三角函数值之间的关系:

    sin=-sinα

    cosplay=cosplayα

    tan=-tanα

    cot=-cotα

    借助公式二和公式三可以得到π-α与α的三角函数值之间的关系:

    sin=sinα

    cosplay=-cosplayα

    tan=-tanα

    cot=-cotα

    借助公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

    sin=-sinα

    cosplay=cosplayα

    tan=-tanα

    cot=-cotα

    π/2±α及3π/2±α与α的三角函数值之间的关系:

    sin=cosplayα

    cosplay=-sinα

    tan=-cotα

    cot=-tanα

    sin=cosplayα

    cosplay=sinα

    tan=cotα

    cot=tanα

    sin=-cosplayα

    cosplay=sinα

    tan=-cotα

    cot=-tanα

    sin=-cosplayα

    cosplay=-sinα

    tan=cotα

    cot=tanα


    3.高一数学必学四要点整理


    幂函数的性质:

    对于a的取值为非零有理数,有必要分成几种状况来讨论各自的特质:

    第一大家了解假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的概念域是R,假如q是偶数,函数的概念域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的概念域是(—∞,0)∪(0,+∞)。因此可以看到x所遭到的限制源自两点,一是大概作为分母而不可以是0,一是大概在偶数次的根号下而不可以为负数,那样大家就能了解:

    排除去为0与负数两种可能,即对于x>0,则a可以是任意实数;

    排除去为0这种可能,即对于x<0x="">0的所有实数,q不可以是偶数;

    排除去为负数这种可能,即对于x为大于且等于0的所有实数,a就不可以是负数。

    总结起来,就能得到当a为不一样的数值时,幂函数的概念域的不同状况如下:假如a为任意实数,则函数的概念域为大于0的所有实数;

    假如a为负数,则x一定不可以为0,不过这个时候函数的概念域还需要依据q的奇偶性来确定,即假如同时q为偶数,则x不可以小于0,这个时候函数的概念域为大于0的所有实数;假如同时q为奇数,则函数的概念域为不等于0的所有实数。

    在x大于0时,函数的值域一直大于0的实数。

    在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

    而只有a为正数,0才进入函数的值域。

    因为x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自状况。

    可以看到:

    (1)所有些图形都通过(1,1)这点。

    (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

    (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

    (4)当a小于0时,a越小,图形倾斜程度越大。

    (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

    (6)显然幂函数。

    4.高一数学必学四要点整理


    直线和平面垂直

    直线和平面垂直的概念:假如一条直线a和一个平面内的任意一条直线都垂直,大家就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

    直线与平面垂直的断定定理:假如一条直线和一个平面内的两条相交直线都垂直,那样这条直线垂直于这个平面。

    直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那样这两条直线平行。直线和平面平行——没公共点

    直线和平面平行的概念:假如一条直线和一个平面没公共点,那样大家就说这条直线和这个平面平行。

    直线和平面平行的断定定理:假如平面外一条直线和这个平面内的一条直线平行,那样这条直线和这个平面平行。

    直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那样这条直线和交线平行。

    5.高一数学必学四要点整理


    直线与方程

    (1)直线的倾斜角

    概念:x轴正向与直线向上方向之间所成的.角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,大家规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

    (2)直线的斜率

    ①概念:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

    ②过两点的直线的斜率公式:

    注意下面四点:

    (1)当时,公式右侧无意义,直线的斜率没有,倾斜角为90°;

    (2)k与P1、P2的顺序无关;

    (3)将来求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

    (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 国家人事考试网(https://www.scxhcf.com/)
All Rights Reserverd ICP备18037099号-1

  • 国家人事考试网微博

  • 国家人事考试网

首页

财经

建筑

医疗